Unit-1

1 The differential equation $N d x+M d y=0$ will be an exact differential equation if
(a) $\frac{\partial M}{\partial x}=\frac{\partial N}{\partial y}$
(b) $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
(c) $\frac{\partial N}{\partial x}=-\frac{\partial M}{\partial y}$
(d) $\frac{\partial M}{\partial x}=-\frac{\partial N}{\partial y}$
$2 \quad \int_{y \text {-const }} M d x+\int($ terms of N not containig $x) d y=c$ will be the solution of the differential equation $M d x+N d y=0$ if
(a) $\frac{\partial M}{\partial x}=\frac{\partial N}{\partial y}$
(b) $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
(c) $\frac{\partial N}{\partial x}=-\frac{\partial M}{\partial y}$
(d) $\frac{\partial M}{\partial x}=-\frac{\partial N}{\partial y}$

3 The number of integrating factors of the equation $M d x+N d y=0$ is ..?
(a) one
(b) Finite
(c) infinite
(d) none of these

4 The integrating factor of the differential equation $x d y+y d x=x^{3} y^{6} d y$ is.
(a) $\frac{1}{(x y)^{3}}$
(b) $\frac{1}{(x y)^{6}}$
(c) $\frac{1}{(x y)^{2}}$
(d) $\frac{1}{x y}$

5 The integrating factor of the differential equation $x d y+y d x=x^{3} y^{6} d x$ is.
(a) $\frac{1}{(x y)^{3}}$
(b) $\frac{1}{(x y)^{6}}$
(c) $\frac{1}{(x y)^{2}}$
(d) $\frac{1}{x y}$

6 The integrating factor of the differential equation $x d y-y d x=x^{2} y^{6} d y$ is.
(a) $\frac{1}{(y)^{3}}$
(b) $\frac{1}{(x)^{6}}$
(c) $\frac{1}{(x)^{2}}$
(d) $\frac{1}{x y}$

7 The integrating factor of the differential equation $x d y-y d x=x^{3} y^{2} d x$ is.
(a) $\frac{1}{(y)^{3}}$
(b) $\frac{1}{(x)^{6}}$
(c) $\frac{1}{(y)^{2}}$
(d) $\frac{1}{x y}$

8 The integrating factor of the differential equation $y d x-x d y+\operatorname{lod} x d x=0$ is. ?
(a) $\frac{1}{(y)^{3}}$
(b) $\frac{1}{(x)^{6}}$
(c) $\frac{1}{(x)^{2}}$
(d) $\frac{1}{x y}$

9 The integrating factor of the differential equation $y d x-x d y+$ lody $d y=0$ is. ?
(a) $\frac{1}{(y)^{2}}$
(b) $\frac{1}{(x)^{6}}$
(c) $\frac{1}{(x)^{2}}$
(d) $\frac{1}{x y}$

10 The integrating factor of the differential equation $x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$ is
(a) $\frac{-1}{(y)^{4}}$
(b) $\frac{-1}{(y)^{6}}$
(c) $\frac{1}{(y)^{2}}$
(d) $\frac{1}{x y}$

11 The integrating factor of the differential equation $\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0$, is
(a) $\frac{1}{2(x y)^{3}}$
(b) $\frac{-1}{(x y)^{6}}$
(c) $\frac{1}{(x y)^{2}}$
(d) $\frac{1}{2 x y}$

12 The solution of the differential equation $\left(x^{2}-y\right) d x=\left(x-y^{2}\right) d y$ will be .?
(a) $x^{3}+y^{3}-3 x y=c$
(b) $x^{3}+y^{3}+3 x y=c$
(c) $x^{3}-y^{3}-3 x y=c$
(d) $x^{3}+y^{3}-x y=c$

13 The solution of the differential equation $y e^{x y} d x+\left(x e^{x y}+2 y\right) d y=0$ is .?
(a) $e^{x y}+y^{2}=c$
(b) $e^{x y}-y^{2}=c$
(c) $e^{x y}+y=c$
(d) $e^{x y}-y=c$

14 The integrating factor of the differential equation $\left(2+x^{2} y^{2}\right) y d x+\left(2-x^{2} y^{2}\right) x d y=0$ is.
(a) $\frac{1}{2(x y)^{3}}$
(b) $\frac{-1}{(x y)^{6}}$
(c) $\frac{-1}{2(x y)^{2}}$
(d) $\frac{1}{2 x y}$

15 The integrating factor of the differential equation $(1+x y) y d x+(1-x y) x d y=0$ is
(a) $\frac{1}{2(x y)^{3}}$
(b) $\frac{-1}{(x y)^{6}}$
(c) $\frac{1}{2(x y)^{2}}$
(d) $\frac{1}{2 x y}$

16 The integrating factor of the differential equation $\left(1+x^{2}+y^{2}\right) d x-2 x y d y=0$ is
(a) $\frac{-1}{x}$
(b) $\frac{-2}{x}$
(c) $\frac{1}{(x)^{2}}$
(d) $\frac{-1}{2 x}$

17 The integrating factor of the differential $\left(y^{4}+2 y\right) d x+\left(x y^{3}+2 y^{4}-4 x\right) d y=0$ is
(a) $\frac{-1}{y}$
(b) $\frac{-3}{y}$
(c) $\frac{1}{(y)^{3}}$
(d) $\frac{-1}{2 x}$

18 The integrating factor of the differential $\left(4 x y+3 y^{2}-x\right) d x+\left(2 x y+x^{2}\right) d y=0$ is
(a) $\frac{1}{(y)^{2}}$
(b) y^{2}
(c) $\frac{1}{(x)^{2}}$
(d) $\quad x^{2}$

If $\frac{1}{x^{2} y^{2}}$ is the integrating factor of the differential equation $\left(4 x y+3 y^{2}-x\right) d x+\left(2 x y+x^{2}\right) d y=0$, then its solution is?
(a) $x y^{-1}-2 \log x+3 \log y=c$
(b) $x y^{-1}-2 \log x-3 \log y=c$
(c) $x y^{-1}-2 \log x=c$
(d) None of these
if $\frac{1}{2(x y)^{2}}$ is the integrating factor of the differential equation $(1+x y) y d x+(1-x y) x d y=0$,
Then its solution will be?
(a) $\log \left(\frac{x}{y}\right)-\frac{1}{x y}=c$
(b) $\log \left(\frac{x}{y}\right)+\frac{1}{x y}=c$
(c) $\log \left(\frac{x}{y}\right)-\frac{1}{x}=c$
(d) $\log \left(\frac{x}{y}\right)+\frac{1}{x}=c$

If e^{x} is the integrating factor of the differential equation $\left(x^{2}+y^{2}+2 x\right) d x+2 y d y=0$, then the solution is
(a) $\left(x^{2}+y^{2}\right) e^{x}=c$
(b) $\left(x^{2}+2 y^{2}\right) e^{x}=c$
(c) $\left(2 x^{2}+y^{2}\right) e^{x}=c$
(d) $\left(y^{2}\right) e^{x}=c$

The solution of the differential equation $y=p x+\sin ^{-1} p$ is
(a) $y=\sin ^{-1} c$
(b) $y=c x+\sin ^{-1} c$
(c) $y=c x$
(d) $y=p c+\sin ^{-1} p$

The solution of the differential equation $x p^{2}-y p+a=0$ is
(a) $y=x c+a / c$
(b) $y=x c+a$
(c) $y=x c+1 / c$
(d) $y=x+a / c$

The solution of the differential equation $y=p x+p^{2}+p$ is
(a) $y=\mathrm{p} c$
(b) $y=c x+c^{2}+c$
(c) $y=c x$
(d) $y=p c+c^{2}+c$
the solution of differential equation $x d y-y d x=x^{3} y^{2} d x$ is.
(a) $\frac{x}{y}=-\frac{x^{4}}{4}+c$
(b) $\frac{x}{y}=\frac{x^{4}}{4}+c$
(c) $\frac{x}{y}=\frac{x^{3}}{4}+c$
(d) none of these
the solution of differential equation $p y-x=0$ is.
(a) $x^{2}+y^{2}=c$
(b) $x^{2}-y^{2}=c$
(c) $x^{2} y^{2}=c$
(d) $x^{2} / y^{2}=c$

1 If $e^{x}, e^{4 x}$ are the solution of differential equation of the form $y^{\prime \prime}+a(x) y^{\prime}+b(x) y=0$
Then the value of $a(x)$ and $b(x)$ is
(a) $a(x)=-5$ and $b(x)=4$
(b) $a(x)=5$ and $b(x)=4$
(c) $a(x)=-5$ and $b(x)-4$
(d) $\mathrm{a}(x)=5$ and $b(x)=$ -4

2 For the given differential equation $x^{2} y^{\prime \prime}+x y^{\prime}=0$ which of the following is not true
(a) Wronskian of fundamental solutions of given differential equation is zero.
(b) Given differential equation is normal on $(-\infty, 0)$.
(c) $1, x^{2}$ forms a basis for the solution set of given differential equation.
(d) Given differential equation is normal on $(0, \infty)$.
(A) $20 \sin (2 x)+20 \cos (2 x)$
(B) $20 \cos (2 x)$,
(C) $20 \sin (2 x)$, (D)None of these

4 On which interval the given differential equation $x(1-x) y^{\prime \prime}-3 x y^{\prime}-y=0$ is normal
(a) $(-\infty, 0)$
(b) $(0,1)$
(c) $(1, \infty)$
(d) All of above

5 The roots of the auxiliary equation of $y^{\prime \prime}+5 y^{\prime}+4 y=18 \mathrm{e}^{2 \mathrm{x}}$ are
(a) $-1,4$,
(b) $-1,-4$,
(c) $1,-4$,
(d) 1,4
$6 \quad 1+e^{x}+e^{-2 x}$ is the particular solution of the LDE
(a) $y^{\prime \prime \prime}+3 y^{\prime \prime}+6 y=0$
(b) $y^{\prime \prime \prime}+y^{\prime \prime}-2 y^{\prime}=0$
(c) y '"' $-2 y=0$
(d) $y^{\prime \prime \prime}+y^{\prime}-2 y=0$

7 The Linear differential equation for the solutions $e^{2 x}, e^{-2 x}$ is
(a) $y^{\prime \prime}+4 y=0$
(b) $y^{\prime \prime}-5 y^{\prime}+4 y=0$
(c) $4 y^{\prime \prime}-2 y^{\prime}+y=0$
(d) $y^{\prime \prime}-4 y=0$

8 General solution of $Y^{\prime \prime \prime}+\pi^{2} y^{\prime}=0, y(0)=0, y(1)=0, y^{\prime}(0)+y^{\prime}(1)=0$
(a) $A \sin \pi x, A$ is arbitrary
(b) $2 \sin \pi x+3 \cos \pi x$
(c) $2 \sin \pi x-3 \cos \pi x$
(d) $A \sin \pi x+3 \cos \pi x$

9 General solution of the LDE $y^{\prime \prime \prime}-9 y^{\prime}=0$ is
(a) $\mathrm{Ae}^{-3 x}+\mathrm{Be}^{3 x}+\mathrm{Ce}^{2 \mathrm{x}}$
(b) $\mathrm{Ae}^{-5 x}+\mathrm{Be}$
(c) $\mathrm{Ae}^{3 x}+\mathrm{Be}^{-5 x}+\mathrm{Ce}^{-2 x}$
(d) $\mathrm{A}+\mathrm{Be}^{3 \mathrm{x}}+\mathrm{Ce}^{-3 \mathrm{x}}$

10 Which set of functions which is not linearly independent is
(a) $x^{2}, 4 x^{3}$
(b.) $2 x, 6 x+3,3 x+2$
(c) $e^{x}, e^{2 x}$
(d) $x^{2}, 3 x^{2}$

11 The Differential equation $x^{2} y^{\prime \prime}+\sqrt{x} y^{\prime}+\left(1-x^{2}\right) y=0$ is normal in the interval
(a) $(1, \infty)$
(b) $(-\infty, 0),(0, \infty)$
(c) $(-\infty,-1),(-1,1),(1, \infty)$
(d) $(-\infty, 1),(1, \infty)$

The complementary function of the LDE $9 y^{\prime \prime \prime}+3 y^{\prime \prime}-5 y^{\prime}+y=0$
(a) $A e^{-x}+(B x+C) e^{x / 3}$
(b) $(A+B x) e^{-x}+C e^{-x / 3}$
(c) $\mathrm{Ae}^{-x}+\mathrm{Be}^{-x / 3}+\mathrm{Cx}$
(d) $\mathrm{Ae}^{-x}+\mathrm{Be}^{x / 3}+\mathrm{Ce}^{-x / 3}$

The Wronskian of the functions $1, \cos x, \sin x$ is
(a) 1
(b.) 0
(c). 2
(d) e^{x}

14 Which of the following differential equation has $\mathrm{y}=e^{-x}\left(c_{1} \cos \sqrt{3 x}+c_{2} \sin \sqrt{3 x}\right)+c_{3} e^{2 x}$ as a general solution
(a) $y^{\prime \prime \prime}+4 y=0$
(b) $y^{\prime \prime \prime}-8 y=0$
(c) $y^{\prime \prime \prime}+8 y=0$
(d) $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}-2 y=0$

15 The displacement $\mathrm{x}(\mathrm{t})$ of a particle is governed by the differential equation $\ddot{x}+\dot{x}+b x=c \dot{x}, b>\quad 0$ then What should be the relation between b and c so that motion of the particle become oscillatory
(a) $|1-c|>2 \sqrt{b}$
(b) $|1-c|<2 \sqrt{b}$
(c) $|1-c|=2 \sqrt{b}$
(d)None of above

16 The non- trivial solution of the boundary value problem $y^{\prime \prime}+w^{2} y=0$ satisfing the conditions $y(0)=0$ and $y(\pi)=0$ and for any integer n is given by
(a) $y=a \cos n x$
(b) $y=a \sin n x$
(c) $y=a \cos n x+b \sin n x$
(d) 0

17 The set of linearly independent solutions of the differential equation

$$
y^{i v}+y^{\prime \prime \prime}+
$$

$14 y^{\prime \prime}+16 y^{\prime}-32 y=0$
(a) $\left\{e^{x}, e^{-2 x}, \sin 4 x, \cos 4 x\right\}$ (b) $\left\{x e^{x}, e^{-2 x}, \sin 4 x, \cos 4 x\right\}$
(c) $\left\{x e^{-2 x}, \sin 4 x, \cos 4 x\right\}$
(d) $\left\{e^{x}, e^{-2 x}, x \sin 4 x, x \cos 4 x\right\}$

1 The particular integral of $y^{\prime}+y=\cosh 3 x$ is
(a) $\frac{1}{8}\left[e^{3 x}-e^{-3 x}\right]$
(b) $\frac{1}{8}\left[e^{3 x}-2 e^{-3 x}\right]$
(c) $\frac{1}{8}\left[2 e^{3 x}-e^{-3 x}\right]$
(d) none of above

2 The particular integral of $\left(D^{2}+a^{2}\right) y=\sin a x$ is
(a) $\frac{-x}{2 a} \cos a x$
(b) $\frac{-x}{2 a} \cos \mathrm{ax}$
(c) $\frac{-a x}{2} \cos a x$
(d) $\frac{a x}{2} \cos a x$

3 Method to evaluate Particular Integral for $\frac{1}{f\left(D^{2}\right)} \cos a x$ is
(a)_Put $D^{2}=a^{2}$, provided $f(a) \neq 0(b)$ Put $D=a$, provided $f(a) \neq 0$
(c)Put $\mathrm{D}^{2}=-\mathrm{a}^{2}$, provided $\mathrm{f}\left(-a^{2}\right) \neq 0(\mathrm{~d})$ Put $\mathrm{D}=\mathrm{a}^{2}$, provided $\mathrm{f}(\mathrm{a}) \neq 0$
$4 \quad$ In Method of Variation of Parameters the value of parameters $\mathrm{A}(\mathrm{x})$ and $\mathrm{B}(\mathrm{x})$ is given as
(a) $A(x)=\int \frac{g(x) y_{1}(x)}{W} d x \quad B(x)=\int \frac{g(x) y_{2}(x)}{W} d x$
(b) $A(x)=\int \frac{g(x) y_{2}(x)}{W} d x \quad B(x)=\int \frac{g(x) y_{1}(x)}{W} d x$
(c) $A(x)=-\int \frac{g(x) y_{1}(x)}{W} d x \quad B(x)=\int \frac{g(x) y_{2}(x)}{W} d x$
(d) $A(x)=-\int \frac{g(x) y_{2}(x)}{W} d x \quad B(x)=\int \frac{g(x) y_{1}(x)}{W} d x$

The auxiliary equation for the LDE $x^{2} y^{\prime \prime}+2 x y^{\prime}-2 y=0$ is
(a) $2 \mathrm{~m}^{2}+\mathrm{m}-6=0$ (b) $4 \mathrm{~m}^{2}+\mathrm{m}+6=0$
(c) $m^{2}+m-2=0$
(d) $2 m^{2}-m-6=0$

6
$y_{2}^{\prime}+4 y_{1}-3 y_{2}=8 t$ the corresponding LDE formed is
(a) $\left(D^{2}-2 D-15\right) y_{1}=-7 e^{-t}-24 t$
(b) $\left(D^{2}+2 D+15\right) y_{1}=-7 e^{-t}-24 t$
(c) $\left(D^{2}+2 D-15\right) y_{1}=7 e^{-t}-24 t$
(d) $\left(D^{2}-2 D+15\right) y_{1}=7 e^{-t}-24 t$

7 Solving by variation of parameter for the equation $y^{\prime \prime}+y=\sec x$, the value of Wronskian is
(a) 1
(b) 2
(c) 3
(d) 4

8 The particular integral of differential equation $(x>0)$
$x^{3} y^{\prime \prime \prime}+5 x^{2} y^{\prime \prime}+5 x y^{\prime}+y=x^{2}$ Using the transformation $\mathrm{x}=\mathrm{e}^{\mathrm{t}}$, we get (in operator notation) $\left[\theta^{3}+2 \theta^{2}+2 \theta+1\right] y=e^{2 t}$ is
(a) $\frac{1}{21} e^{2 t}$
(b) $\frac{1}{31} e^{-2 t}$
(c) $-\frac{1}{51} e^{2 t}$
(d) $\frac{1}{21} e^{7 t}$

9 Particular Integral of the LDE $9 y^{\prime \prime}+6 y^{\prime}+\mathrm{y}=e^{-\mathrm{x} / 3}$ is
(a) $\frac{x^{2}}{18} e^{-x / 3}$
(b) $\frac{x^{2}}{28} e^{x / 3}$
(c) $\frac{x^{2}}{13}$
(d) $\frac{x^{2}}{17} e^{-x / 3}$

10 Particular integral of $y^{\prime \prime}+y^{\prime}=x^{2}+2 x+4$
(a) $\frac{x^{2}}{3}+4 x$
(b) $\frac{x^{3}}{3}+4$
(c) $\frac{x^{3}}{3}+4 x$
(d) $\frac{x^{3}}{3}+4 x^{2}$

11 By the method of undetermined coefficients the trial solution for y_{p} for the differential equation $y^{\prime \prime}+2 y^{\prime}+y=6 e^{-x}$ is of the form
(a) $\mathrm{A} e^{-x}$
(b)
(c) $\mathrm{C} x^{2} e^{-x}$
(d) None of these

12 For a given system of linear differential equation $y_{1}{ }^{\prime}=2 y_{1}+y_{2}, y_{2}{ }^{\prime}=y_{1}+2 y_{2}$, the second order linear differential satisfied by the y_{1} is
(a) $y_{1}^{\prime \prime}+4 y_{1}^{\prime}+3 y_{1}=0$
(b) $\quad y_{1}^{\prime \prime}-4 y_{1}^{\prime}+3 y_{1}=0$
(c) $y_{1}^{\prime \prime}-4 y_{1}^{\prime}-3 y_{1}=0$
(d)none of these

13 Which suitable transformation of independent variable should be used to covert the given differential equation $(x+2)^{3} y^{\prime \prime \prime}+(x+2)^{2} y^{\prime \prime}+(x+2) y^{\prime}-y=24 x^{2}$ into a linear differential equation with constant coefficients?
(a) $x=e^{t}$
(b) $x=\log t$
(c) $x=\left(e^{t}-2\right)$
(d) None of these

14 The solution of differential equation $x^{2} y^{\prime \prime}-x y^{\prime}+2 y=6$ which satisfies the given conditions

$$
y(1)=1, y^{\prime}(1)=2 .
$$

(a) $y=x[2 \sin (\ln x)-3 \cos (\ln x)]+3$
(b) $y=x[4 \sin (\ln x)-2 \cos (\ln x)]+3$
(c) $y=x[4 \sin (\ln x)-$
$3 \cos (\ln x)]+3 \quad$ (d) $y=x[2 \sin (\ln x)$
) $-\cos (\ln x)]+3 a$

15 If $D=\frac{d}{d x}$, then $\frac{1}{\left(x^{2} D^{2}+2\right)} 16 x^{3}$ is equal
(A) $\frac{1}{2} x^{3}$
(B) $2 x^{3}$
(C) $\frac{1}{4}(\log x)^{3}$
(D) $\frac{1}{4} x^{3}$

16 The solution of differential equation $2 x^{2} y^{\prime \prime}+3 x y^{\prime}-y=x$ which satisfies the given conditions $y(1)=1, y(4)=\frac{41}{16}$ is
(A) $y=\frac{1}{4}\left(\sqrt{x}+\frac{1}{x}\right)+\frac{x}{2}$
(B) $y=\frac{1}{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)+\frac{x}{2}$
(C) $y=\frac{1}{4}\left(\sqrt{x}+\frac{1}{x}\right)+\frac{x^{2}}{2}$
(D)None of these

17 The resultant second order differential equation in terms of y_{2} for the two system of first order differential equations

$$
\mathrm{y}_{1}^{\prime}+2 \mathrm{y}_{2}-2 \mathrm{y}_{1}-\mathrm{y}_{2}=\mathrm{e}^{2 \mathrm{t}}, \mathrm{y}_{2}^{\prime}+\mathrm{y}_{1}-2 \mathrm{y}_{2}=0, \text { is }
$$

(a) $\mathrm{y}_{2}{ }^{\prime \prime}-6 \mathrm{y}_{2}^{\prime}+5 \mathrm{y}_{2}=-\mathrm{e}^{2 \mathrm{t}} \quad$ (b) $\mathrm{y}_{2}^{\prime \prime}+6 \mathrm{y}_{2}{ }^{\prime}+5 \mathrm{y}_{2}=-\mathrm{e}^{2 \mathrm{t}} \quad$ (c) $\mathrm{y}_{2}^{\prime \prime}-6 \mathrm{y}_{2}^{\prime}+5 \mathrm{y}_{2}=\mathrm{e}^{2 \mathrm{t}}$ (d) $\mathrm{y}_{2}^{\prime \prime}+6 \mathrm{y}_{2}{ }^{\prime}+5 \mathrm{y}_{2}=\mathrm{e}^{2 \mathrm{t}}$

18 The particular integral of the differential equation $\left(D^{3}-D\right) y=e^{x}+e^{-x}$
(a) $\frac{e^{x}+e^{-x}}{2}$
(b) $x\left(\frac{e^{x}+e^{-x}}{2}\right)$
(c) $x^{2}\left(\frac{e^{x}+e^{-x}}{2}\right)$
(d) $x^{2}\left(\frac{e^{x}-e^{-x}}{2}\right)$

Unit-5

1 The parametric representation of the cylinder $x^{2}+y^{2}=a^{2}$ is
(a) $r(u, v)=a \cos u i+a \sin u j+v k$
(b) $r(u, v)=a \cos u i+a \sin u j+k$
(c) $r(u, v)=\cos u i+\sin u j+k$
(d) $r(u, v)=a \cos u i+a \sin u j+u k$

2 The parametric representation of the paraboloid of revolution $x^{2}+y^{2}=z$ is
(a) $r(u, v)=u \cos v i+u \sin v j+u^{2} k$
(b) $r(u, v)=a \cos u i+a \sin u j+u k$
(c) $r(u, v)=v \cos u i+v \sin u j+v k$
(d) $r(u, v)=v \cos u i+v \sin u j+u k$

3 The parametric representation of the cone of revolution $x^{2}+y^{2}=z^{2}$ is?
(a) $r(u, v)=u \cos v i+u \sin v j+u k$
(b) $r(u, v)=a \cos u i+a \sin u j+u k$
(c) $r(u, v)=v \cos u i+v \sin u j+u k$
(d) $r(u, v)=v \cos u i+v \sin u j+u k$

4 The parametric representation of the helix is ?
(a) $r(t)=a \cos t i+a \sin t j+c t k$
(b) $r(t)=a \cos t i+a \sin t j+k$
(c) $r(t)=\cos t i+\sin u t+k$
(d) $r(t)=a \cos t i+a \sin t j+t k$

5 If $r(t)$ denotes the position vector of a point P on the curve C, then the tangent vector to curve C at P is given by?
(a) $\quad r^{\prime}(t)$
(b) $\quad r^{/ /}(t)$
(c) $\quad r(t)$
(d) none of these

6 If $r(t)$ denotes the position vector of a point P on the curve C, then the unit tangent vector to curve C at P Is given by?
(a) $\frac{r^{\prime}(t)}{\left|r^{\prime}(t)\right|}$
(b) $\frac{r^{/ /}(t)}{|r /(t)|}$
(c) $\frac{r^{/ /}(t)}{|r(t)|}$
(d) $\frac{r^{/ /}(t)}{|r / /(t)|}$

7 If $\mathrm{V}(\mathrm{t})$ is the vector function then $\left[V(t) \times V^{\prime}(t)\right]^{/}=$?
(a) $\quad V(t) \times V^{/ /}(t)$
(b) $V(t) \times V^{\prime}(t)$
(c) $\quad V^{\prime}(t) \times V^{\prime}(t)$
(d) none

8 The length of the curve $r(t)=\cos t i+\sin t j+t k, 0 \leq t \leq 2 \pi i s$
(a) $2 \sqrt{ } 2 \pi$
(b) $\sqrt{ } 2 \pi$
(c) $3 \sqrt{ } 2 \pi$
(d) $5 \sqrt{2} \pi$

The parametric representation of the curve $x=y, y=z$ is
(a) $r(t)=t(i+j+k)$
(b) $r(t)=(i+j+k)$
(c) $r(t)=t(i-j+k)$
(d) $r(t)=2 t(i+j+k)$

10 If $r(t)=x(t) i+y(t) j+z(t) k$, then the norm of $r(\mathrm{t})$ is equal to
(a) $\left[x(t)^{2}+y(t)^{2}+z(t)^{2}\right]^{1 / 2}$
(b) $[x(t)+y(t)+z(t)]^{1 / 2}$
(c) $\quad\left[x(t)^{2}+y(t)^{2}+z(t)^{2}\right]^{2}$
(d) $\left[x(t)^{2}+y(t)^{2}+z(t)^{2}\right]$

11 The length of the curve $r(t)=2 \cos t i+2 \sin t j, 0 \leq t \leq 2 \pi$ is
(a) 4π
(b) 2π
(c) π
(d) 3π

12 The length of the curve $r(t)=\cos t i+\sin t j+3 t k, 0 \leq t \leq 2 \pi$
(a) $4 \pi \sqrt{ } 10$
(b) $2 \pi \sqrt{ } 10$
(c) $\pi \sqrt{ } 10$
(d) $3 \pi \sqrt{10}$

13 The gradient of a scalar field $f(x, y, z)$ produces a \qquad ?
(a) Vector field
(b) Scalar Field
(c) surface
(d) none

14 If $r=x i+y j+z k$, then the $\operatorname{grad}\left(\frac{1}{r}\right)=$?
(a) $-\frac{\vec{r}}{r^{3}}$
(b) $\frac{\vec{r}}{r^{3}}$
(c) $-\frac{\vec{r}}{r}$
(d) $-2 \frac{\vec{r}}{r^{3}}$

15 The vector normal to the surface $f(x, y, z)=c$ at the point P is given by ?
(a) $\nabla f(P)$
(b) $\nabla \cdot f(P)$
(c) $\nabla \times f$
(d) none

16 The normal vector to the surface $x y^{2}+2 y z=8$ at the point $(3,-2,1)$ is ?
(a) $2 x-5 j-2 k$
(b) $2 x+5 j-2 k$
(c) $2 x-5 j+2 k$
(d) $2 x+5 j+2 k$

17 The directional derivative of $f(x, y, z)$ in the direction of \vec{b} is ?
(a) $\nabla f \cdot \frac{\vec{b}}{|b|}$
(b) $\quad \nabla f . b$
(c) $\nabla . f$
(d) none

18 The maximum rate of increase of a scalar field $f(x, y, z)$ occure in the direction of the vector...?
(a) $\quad \nabla f$
(b)
D. f
(c) $\nabla \times f$
(d) none

19 The equation of tangent plane to the surface $x^{2}-3 y^{2}-z^{2}=2$ at the point $(3,1,2)$ is ?
(a) $3 x-3 y-2 z=2$
(b) $3 x-3 y+2 z=2$
(c) $3 x+3 y-2 z=2$
(d) $3 x+3 y+2 z=2$

20 If ' f ' is a differentiable scalar field then $\nabla \times \nabla f=$?
(a) 0
(b) f
(c) $-f$
(d) $2 f$

21 If V is a differentiable vector field then $\nabla \cdot(\nabla \times f)=$?
(a) 0
(b) f
(c) $\quad-f$
(d) 2 f

22 If V is a differentiable vector field then $\operatorname{curl}(\operatorname{div}(\mathrm{V}))=$?
(a) 0
(b) 1
(c) -1
(d) not defined

23 A vector field V is said to be rotational if
(a) $\nabla \times V \neq 0$
(b) $\nabla \times V=0$
(c) $\quad \nabla . V=0$
(d) None

24 A force field F is said to be conservative if ?
(a) $\nabla \times F \neq 0$
(b) $\nabla \times F=0$
(c) $\quad \nabla . F=0$
(d) None

25 If $V=z i+x j+y k$ then curl $($ curl V$)=$?
(a) 0
(b) 1
(c) -1
(d) none

26 If f, g are scalar function, then $\nabla \cdot(\nabla f \times \nabla g)=$?
(a) 0
(b) 1
(c) 2
(d) none

27 If $f(x, y, z)$ satisfy the Laplace equation $\nabla^{2} f=0$, then $\nabla f(x, y, z)$ is a ?
(a) solenoidal
(b) Irrotational
(c) Both a \& b
(d) none

28 If \mathbf{a} is a constant vector and $\boldsymbol{r}=x i+y j+z k$ then which of the following is true?
(a) $\nabla \cdot(a . r)=a$
(b)) $\nabla \cdot(a \times r)=0$
(c) $\nabla \times(a \times r)=2 a$
(d) All of these

If $f(x, y, z)$ satisfy the Laplace equation $\nabla^{2} f=0$, then $\nabla f(x, y, z)$ is a ?
(a) solenoidal
(b) Irrotational
(c) Both a \& b
(d) none

28 If \mathbf{a} is a constant vector and $\boldsymbol{r}=x i+y j+z k$ then which of the following is true?
(a) $\nabla \cdot(a . r)=a$
(b)) $\nabla \cdot(a \times r)=0$
(c) $\nabla \times(a \times r)=2 a$
(d) All of these

Unit - 6 Line integral

$1 \int_{c} d s=\cdots \ldots \ldots$, where C is the curve $x=3 \cos t, y=3 \sin t, 0 \leq t \leq \pi$
(a) 3π
(b) π
(c) 2π
(d) $3 \pi / 2$
$2 \int_{c}\left(x^{2}+y z\right)=\cdots \ldots \ldots$? where C is the curve $x=t, y=t^{2}, z=3 t, 1 \leq t \leq 2$
(a) $163 / 4$
(b) $163 / 2$
(c) 163
(d) 120

3 The closed line integral $\int_{C} M d x+N d y$ over the curve C is independent of the path if ?
(a) $\frac{\partial M}{\partial x}=\frac{\partial N}{\partial y}$
(b) $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
(c) $\frac{\partial N}{\partial x}=-\frac{\partial M}{\partial y}$
(d) $\frac{\partial M}{\partial x}=-\frac{\partial N}{\partial y}$
(b)

4 If V represent the force field then the work done by V along any simple closed path is ...?
(a) 0
(b) V
(c) 2 V
(d) none of these
$5 \oint_{C}\left(x+x y^{2}\right) d x+\left(y+x^{2} y\right) d y=\cdots \ldots \ldots$? where C is the boundary of the region bounded by $x=$ $y, x=y^{2}$
(a) 0
(b) 21
(c) 12
(d) 123
$6 \quad \oint_{C}\left(4 x y+x^{2}\right) d x+\left(3 y+2 x^{2}\right) d y=\cdots \ldots \ldots .$. where C is the boundary of the region bounded by $x^{2}=$ $y, x=y^{2}$
(a) 0
(b) 101
(c) 112
(d) 123
$7 \quad \int_{c} r . d r=\cdots \ldots \ldots$, where C is the circle $x^{2}+y^{2}=a^{2}, z=0$ and $r=x i+y j+z k$
(a) 0
(b) 1
(c) -1
(d) 3
$8 \quad \int_{C} r \times d r=\cdots \ldots \ldots$? where C is the circle $x^{2}+y^{2}=a^{2}, z=0$ and $r=x i+y j+z k$
(a) 0
(b) 1
(c) -1
(d) 3

9 The area bounded by the closed curve $x=a \cos t, y=b \sin t, x \geq 0, y \geq 0$ is
(a) $\pi a b / 4$
(b) $\pi a b$
(c) $\pi a b / 2$
(d) $\pi a b / 3$

10 The area bounded by the closed curve $x=4 \cos t, y=4 \sin t, 0 \leq t \leq 2 \pi$ is
(a) 16π
(b) 4π
(c) $3 \pi / 2$
(d) $\pi / 3$
$11 \oint_{C} e^{x}(\operatorname{Siny} d x+\operatorname{Cos} y d y)=$? where C is the boundary of the circle $x^{2}+y^{2}=a^{2}$
(a) 0
(b) 4π
(c) $\pi / 2$
(d) $2 \pi / 3$

12 The surface area of the surface $z^{2}=x^{2}+y^{2}, 0 \leq z \leq 4$ is?
(a) $16 \sqrt{2} \pi$
(b) $\sqrt{2} \pi$
(c) $4 \sqrt{2} \pi$
(d) 16π

13 The surface area of the surface $z^{2}+x^{2}+y^{2}=16, x \geq 0, y \geq 0, z \geq 0$ is ?
(a) 8π
(b) 4π
(c) $4 \sqrt{2} \pi$
(d) 16π
$14 \iint_{S}(y z d y d z+z x d z d x+x y d x d y)=$?:S is the surface of the cube with edge of length one unit
(a) 0
(b) 4π
(c) $\pi / 2$
(d) $2 \pi / 3$
$15 \iint_{S}(x d y d z+y d z d x+z d x d y)=$?:S is the surface of the cube with edge of length one unit
(a) 3
(b) 4π
(c) 0
(d) -3
$16 \iint_{S}(x d y d z+y d z d x+z d x d y)=$?:S is the surface $x^{2}+y^{2}+z^{2}=16$
(a) 256π
(b) 144π
(c) 0
(d) 32π
$17 \iint_{S}(d y d z+d z d x+d x d y)=?: S$ is the surface $z^{2}+x^{2}+y^{2}=16$
(a) 0
(b) 144π
(c) 10
(d) 32π

18
If S is the boundary of a closed region D and \boldsymbol{n} is outward unit normal vector drawn to surface S and $x i+y j+z k$ then $\iint_{S}(r . n) d A=? \quad(V$ is the volume of the region)
(a) 3 V
(b) $2 V$
(c) V
(d) $V / 2$
$19 \iint_{S}(r . n) d A=$? where S is the surface of the cube $0 \leq x \leq 1,0 \leq y \leq 2,0 \leq z \leq 3$
(a) 18
(b) 15
(c) 12
(d) 10
$20 \quad \iint_{S}(r . n) d A=$? S is the surface $x^{2}+y^{2}+z^{2}=9$
(a) 108π
(b) 144π
(c) 0
(d) 32π

21 If S is the boundary of a closed region D and \mathbf{n} is outward unit normal vector drawn to surface S and $r=x i+y j+z k, V=2 x i+3 z y j+2 x y z k$ then $\iint_{S}(\operatorname{curlV} . n) d A=? \quad(\mathrm{~V}$ is the volume of the region)
(a) 0
(b) 2 V
(c) V
(d) $\mathrm{V} / 2$
$22 \iint_{S}$ (curlV.n)dA=? where S is the surface $0 \leq x \leq 4,0 \leq y \leq 2,0 \leq z \leq 3$ and $V=x y i+z x j-z k$
(a) 0
(b) 12
(c) 324
(d) 128

23 If S is the boundary of a closed region D and \mathbf{n} is outward unit normal vector drawn to surface S and $r=x i+y j+z k, \boldsymbol{a}$ is a constant vector then $\iint_{S}(a . n) d A=? \quad$ (A is the area of the region)
(a) 0
(b) $\quad 2 \mathrm{~A}$
(c) 3 A
(d) $\mathrm{A} / 2$

Unit-4 PDE

1 How many possible solution are there for one dimensional Heat equation?
(a) Three
(b) two
(c) one
(d) none of these

2 How many possible solution are there for wave equation?
(a) Three
(b) two
(c) one
(d) none of these

3 Method of separation of variable to solve the PDE is also known as ?
(a) Fourier Method
(b) Picard Method
(c) Laplace Method
(d) Lagrange's Method

4 Which of the following solution of heat equation is used to solve the problem related to conduction of heat?
(a) $u(x, t)=(A \cos p x+B \sin p x) e^{-c^{2} p^{2} t}$
(b) $u(x, t)=(A \cos p x+B \sin p x) e^{c^{2} p^{2} t}$
(c) $u(x, t)=(A \cos p t+B \sin p t) e^{-c^{2} p^{2} t}$
(d) $u(x, t)=(A \cos p x+B \sin p x) e^{-c^{2} p^{2}}$

5 In the steady state condition the two dimensional heat equation become \qquad
(a) Laplace equation
(b) Lagrange equation
(c) Wave equation
(d) Not changed

6 The solution of $3 \frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=0, u(x, 0)=4 e^{-x}$ is. \qquad .?
(a) $4 e^{-x+3 / 2 y}$
(b) $4 e^{-x-3 / 2 y}$
(c) $4 e^{x+3 / 2 y}$
(d) $4 e^{-3 / 2 y}$

7 The solution of $\frac{\partial u}{\partial x}=4 \frac{\partial u}{\partial y}, u(0, y)=8 e^{-3 y}$ is \qquad
(a) $8 e^{-(12 x+3 y)}$
(b)) $8 e^{(12 x+3 y)}$
(c) $) 8 e^{-(12 x-3 y)}$
(d)) $8 e^{(12 x-3 y)}$

8 In the equation $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, c^{2}$ represent $\ldots \ldots$?
(a) Diffusivity of material
(b) Density of Material
(c) Heat capacity of material
(d) none of these

9 The general second degree PDE, $A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial y}+C \frac{\partial^{2} u}{\partial y^{2}}+D \frac{\partial u}{\partial x}+E \frac{\partial u}{\partial y}+F u=0 \quad$ represent a parabolic equation if ?
(a) $B^{2}-4 A C=0$
(b) $B^{2}-4 A C>0$
(c) $B^{2}-4 A C<0$
(d) None

10 The general second degree PDE, $A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial y}+C \frac{\partial^{2} u}{\partial y^{2}}+D \frac{\partial u}{\partial x}+E \frac{\partial u}{\partial y}+F u=0 \quad$ represent a elliptic equation if ?
(a) $B^{2}-4 A C=0$
(b) $B^{2}-4 A C>0$
(c) $B^{2}-4 A C<0$
(d) None

11 The general second degree PDE, $A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial y}+C \frac{\partial^{2} u}{\partial y^{2}}+D \frac{\partial u}{\partial x}+E \frac{\partial u}{\partial y}+F u=0 \quad$ represent Hyperbolic equation if?
(a) $B^{2}-4 A C=0$
(b) $B^{2}-4 A C>0$
(c) $B^{2}-4 A C<0$
(d) None

12 Which type of The two-dimensional heat equation $\frac{\partial u}{\partial t}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)$ is ?
(a) Parabolic
(b) Elliptic
(c) Hyperbolic
(d) Non linear

13 Which type of the pd equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ is ?
(a) Parabolic
(b) Elliptic
(c) Hyperbolic
(d) Non linear

14 Classify the PDE $\frac{\partial^{2} u}{\partial x^{2}}=5 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}$?
(a) Parabolic
(b) Elliptic
(c) Hyperbolic
(d) Noneof these

15 Classify the PDE $\frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial x \partial y}+3 \frac{\partial^{2} u}{\partial y^{2}}-\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+3 u=0$
(a) Parabolic
(b) Elliptic
(c) Hyperbolic
(d) Noneof these

Classify the PDE $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial x \partial y}-\frac{\partial^{2} u}{\partial y^{2}}-\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+3 u=0$
(a) Parabolic
(b) Elliptic
(c) Hyperbolic
(d) Noneof these

17 Which of the following is wave equation ?
(a) $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$
(b) $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$
(c) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
(d) $\frac{\partial u}{\partial t}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)$

18 Which of the following is the solution of wave equation?
(a) $\left(c_{1} e^{p x}+c_{2} e^{-p x}\right)\left(c_{3} e^{c p t}+c_{4} e^{-c p t}\right)$
(b) $\left(c_{1} \cos p x+c_{2} \sin p x\right)\left(c_{3} \cos c p t+c_{4} \sin c p t\right)$
(c) $\quad\left(c_{1} x+c_{2}\right)\left(c_{3} t+c_{4}\right)$
(d) all of these

