Unit-1

1 The differential equation N dx + M dy = 0 will be an exact differential equation if

(a)
$$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$$
 (b) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ (c) $\frac{\partial N}{\partial x} = -\frac{\partial M}{\partial y}$ (d) $\frac{\partial M}{\partial x} = -\frac{\partial N}{\partial y}$

2 $\int_{y-const} M \, dx + \int (terms \, of \, N \, not \, containig \, x) \, dy = c \text{ will be the solution of the differential equation}$ $M \, dx + N \, dy = 0 \text{ if}$

(a)
$$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$$
 (b) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ (c) $\frac{\partial N}{\partial x} = -\frac{\partial M}{\partial y}$ (d) $\frac{\partial M}{\partial x} = -\frac{\partial N}{\partial y}$
3 The number of integrating factors of the equation $M \, dx + N \, dy = 0 \, is . . ?$
(a) one (b) Finite (c) infinite (d) none of these
4 The integrating factor of the differential equation $x \, dy + y \, dx = x^3 y^6 \, dy \, is$.
(a) $\frac{1}{(xy)^3}$ (b) $\frac{1}{(xy)^6}$ (c) $\frac{1}{(xy)^2}$ (d) $\frac{1}{xy}$
5 The integrating factor of the differential equation $x \, dy + y \, dx = x^3 y^6 \, dx \, is$.
(a) $\frac{1}{(xy)^3}$ (b) $\frac{1}{(xy)^6}$ (c) $\frac{1}{(xy)^2}$ (d) $\frac{1}{xy}$
6 The integrating factor of the differential equation $x \, dy - y \, dx = x^3 y^6 \, dx \, is$.
(a) $\frac{1}{(y)^3}$ (b) $\frac{1}{(x)^6}$ (c) $\frac{1}{(y)^2}$ (d) $\frac{1}{xy}$
7 The integrating factor of the differential equation $x \, dy - y \, dx = x^3 \, y^2 \, dx \, is$.
(a) $\frac{1}{(y)^3}$ (b) $\frac{1}{(x)^6}$ (c) $\frac{1}{(y)^2}$ (d) $\frac{1}{xy}$
8 The integrating factor of the differential equation $y \, dx - x \, dy + \, lodx \, dx = 0 \, is$.?
(a) $\frac{1}{(y)^3}$ (b) $\frac{1}{(x)^6}$ (c) $\frac{1}{(x)^2}$ (d) $\frac{1}{xy}$
9 The integrating factor of the differential equation $y \, dx - x \, dy + \, lody \, dy = 0 \, is$.?
(a) $\frac{1}{(y)^3}$ (b) $\frac{1}{(x)^6}$ (c) $\frac{1}{(y)^2}$ (d) $\frac{1}{xy}$
10 The integrating factor of the differential equation $x^2 \, y \, dx - (x^3 + y^3) \, dy = 0 \, is$
(a) $\frac{1}{(y)^3}$ (b) $\frac{1}{(x)^6}$ (c) $\frac{1}{(x)^2}$ (d) $\frac{1}{xy}$
11 The integrating factor of the differential equation $(x^2 - 2xy^2) \, dx + (x^3 - x^2) \, dy \, y \, dy \, s^3 - xy = c$
(a) $\frac{1}{(xy)^3}$ (b) $\frac{-1}{(xy)^6}$ (c) $\frac{1}{(xy)^2}$ (d) $\frac{1}{2xy}$
12 The solution of the differential equation $(x^2 - y) \, dx = (x - y^2) \, dy \, w \, il \, be . ?$
(a) $\frac{1}{(xy)^3}$ (b) $\frac{-1}{(xy)^6}$ (c) $\frac{1}{(xy)^2}$ (d) $\frac{1}{2xy}$
13 The solution of the differential equation $(x^2 - y) \, dx = (x - x^2)^2) \, dy \, dy \, s \, y^3 - xy = c$
14 The integrating factor of the differential equation $(1 + x^2) \, y \, dx + (2 - x^2 x^2) \, x \, dy = 0 \, is$
(a) $\frac{1}{(xy)^3}$ (b)

(a)
$$\frac{1}{(y)^2}$$
 (b) y^2 (c) $\frac{1}{(x)^2}$ (d) x^2

19 If $\frac{1}{x^2y^2}$ is the integrating factor of the differential equation $(4xy + 3y^2 - x)dx + (2xy + x^2)dy = 0$, then its solution is?

(a) $xy^{-1} - 2logx + 3logy = c$ (b) $xy^{-1} - 2logx - 3logy = c$ (c) $xy^{-1} - 2logx = c$ (d) None of these if $\frac{1}{2(xy)^2}$ is the integrating factor of the differential equation (1 + xy)ydx + (1 - xy)xdy = 0,

- (a) $\log\left(\frac{x}{y}\right) \frac{1}{xy} = c$ (b) $\log\left(\frac{x}{y}\right) + \frac{1}{xy} = c$ (c) $\log\left(\frac{x}{y}\right) \frac{1}{x} = c$ (d) $\log\left(\frac{x}{y}\right) + \frac{1}{x} = c$
- 21 If e^x is the integrating factor of the differential equation $(x^2 + y^2 + 2x)dx + 2ydy = 0$, then the solution is (a) $(x^2 + y^2)e^x = c$ (b) $(x^2 + 2y^2)e^x = c$ (c) $(2x^2 + y^2)e^x = c$ (d) $(y^2)e^x = c$
- 22 The solution of the differential equation $y = px + \sin^{-1} p$ is (a) $y = \sin^{-1} c$ (b) $y = cx + \sin^{-1} c$ (c) y = cx (d) $y = pc + \sin^{-1} p$ 23 The solution of the differential equation $xp^2 - yp + a = 0$ is

(a)
$$y = xc + a/c$$
 (b) $y = xc + a$ (c) $y = xc + 1/c$ (d) $y = x + a/c$
24 The solution of the differential equation $y = nx + n^2 + n$ is

(a)
$$y = pc$$
 (b) $y = cx + c^2 + c$ (c) $y = cx$ (d) $y = pc + c^2 + c$
25 the solution of differential equation $xdy - ydx = x^3y^2dx$ is.

(a)
$$\frac{x}{y} = -\frac{x^4}{4} + c$$
 (b) $\frac{x}{y} = \frac{x^4}{4} + c$ (c) $\frac{x}{y} = \frac{x^3}{4} + c$ (d) none of these the solution of differential equation $xy = x = 0$ is

26 the solution of differential equation
$$py - x = 0$$
 is.
(a) $x^2 + y^2 = c$ (b) $x^2 - y^2 = c$ (c) $x^2y^2 = c$ (d) $x^2/y^2 = c$

1 If e^x , e^{4x} are the solution of differential equation of the form y'' + a(x)y' + b(x)y = 0Then the value of a(x) and b(x) is

(a) a(x) = -5 and b(x) = 4 (b) a(x) = 5 and b(x) = 4 (c) a(x) = -5 and b(x) - 4 (d) a(x) = 5 and b(x) = -4

- 2 For the given differential equation $x^2y'' + xy' = 0$ which of the following is not true
 - (a) Wronskian of fundamental solutions of given differential equation is zero.
 - (b) Given differential equation is normal on $(-\infty, 0)$.
 - (c) $1, x^2$ forms a basis for the solution set of given differential equation.
 - (d) Given differential equation is normal on $(0,\infty)$.
- 3 $(D^4 D^2)\sin(2x) = ?$ (A)20 sin(2x) + 20 cos(2x) (B) 20 cos(2x), (C) 20 sin(2x), (D)None of these
- 4 On which interval the given differential equation x(1-x)y'' 3xy' y = 0 is normal (a) $(-\infty, 0)$ (b)(0,1) (c) $(1, \infty)$ (d) All of above
- 5 The roots of the auxiliary equation of $y'' + 5y' + 4y = 18e^{2x}$ are (a) - 1, 4, (b) - 1, -4, (c) 1, -4, (d) 1, 4
- 6 1 $+e^{x} + e^{-2x}$ is the particular solution of the LDE

(a)y''' + 3y'' + 6y = 0 (b)y''' + y'' - 2y' = 0 (c)y''' - 2y = 0 (d) y''' + y' - 2y = 0

7 The Linear differential equation for the solutions e^{2x} , e^{-2x} is

(a)y'' + 4y = 0 (b) y'' - 5y' + 4y = 0 (c) 4y'' - 2y' + y = 0 (d) y'' - 4y = 0

- 8 General solution of $Y''' + \pi^2 y' = 0$, y(0) = 0, y(1) = 0, y'(0) + y'(1) = 0(a)A sin πx , A is arbitrary (b)2sin $\pi x + 3 \cos \pi x$ (c)2sin $\pi x - 3 \cos \pi x$ (d)Asin $\pi x + 3 \cos \pi x$
- 9 General solution of the LDE y'''-9y' = 0 is (a)Ae^{-3x} + Be^{3x} + Ce^{2x} (b) Ae^{-5x} + Be (c) Ae^{3x} + Be^{-5x} + Ce^{-2x} (d) A + Be^{3x} + Ce^{-3x}
- 10 Which set of functions which is not linearly independent is
 - (a) x^2 , $4x^3$ (b.) 2x, 6x+3, 3x+2 (c) e^x , e^{2x} (d) x^2 , $3x^2$
- 11 The Differential equation $x^2y'' + \sqrt{x}y' + (1-x^2)y = 0$ is normal in the interval

(a)
$$(1, \infty)$$
 (b) $(-\infty, 0), (0, \infty)$ (c) $(-\infty, -1), (-1, 1), (1, \infty)$ (d) $(-\infty, 1), (1, \infty)$

- 12 The complementary function of the LDE 9y''' + 3y''- 5y' + y =0 (a)Ae^{-x} + (Bx +C)e^{x/3} (b) (A+Bx)e^{-x} + Ce^{-x/3} (c)Ae^{-x} + Be^{-x/3} + Cx (d) Ae^{-x} + Be^{x/3} + Ce^{-x/3}
- 13 The Wronskian of the functions 1, cosx, sinx is

- (a) 1 (b.)0 (c).2 (d)e^x
- 14 Which of the following differential equation has $y = e^{-x}(c_1 cos \sqrt{3x} + c_2 sin \sqrt{3x}) + c_3 e^{2x}$ as a general solution

(a) y''' + 4y = 0 (b) y''' - 8y = 0 (c) y''' + 8y = 0 (d) y''' - 2y'' + y' - 2y = 0

15 The displacement x(t) of a particle is governed by the differential equation $\ddot{x} + \dot{x} + bx = c\dot{x}$, b > 0 then What should be the relation between b and c so that motion of the particle become oscillatory

(a) $|1-c| > 2\sqrt{b}$ (b) $|1-c| < 2\sqrt{b}$ (c) $|1-c| = 2\sqrt{b}$ (d)None of above

16 The non-trivial solution of the boundary value problem $y'' + w^2 y = 0$ satisfing the conditions y(0) = 0 and $y(\pi) = 0$ and for any integer n is given by

(a) $y = a \cos nx$ (b) $y = a \sin nx$ (c) $y = a \cos nx + b \sin nx$ (d) 0

17 The set of linearly independent solutions of the differential equation $y^{i\nu} + y''' + 14y'' + 16y' - 32y = 0$

(a) $\{e^{x}, e^{-2x}, \sin 4x, \cos 4x\}$ (b) $\{xe^{x}, e^{-2x}, \sin 4x, \cos 4x\}$ (c) $\{xe^{-2x}, \sin 4x, \cos 4x\}$ (d) $\{e^{x}, e^{-2x}, x \sin 4x, x \cos 4x\}$

UNIT 3

7

- 1 The particular integral of $y' + y = \cosh 3x$ is (a) $\frac{1}{8}[e^{3x} - e^{-3x}]$ (b) $\frac{1}{8}[e^{3x} - 2e^{-3x}]$ (c) $\frac{1}{8}[2e^{3x} - e^{-3x}]$ (d) none of above
- The particular integral of $(D^2 + a^2)y = \sin ax$ is 2

(a)
$$\frac{-x}{2a}\cos ax$$
 (b) $\frac{-x}{2a}\cos ax$ (c) $\frac{-ax}{2}\cos ax$ (d) $\frac{ax}{2}\cos ax$

Method to evaluate Particular Integral for $\frac{1}{f(D^2)}\cos ax$ is 3 (a) Put $D^2 = a^2$, provided $f(a) \neq 0$ (b)Put D = a, provided $f(a) \neq 0$

(c)Put $D^2 = -a^2$, provided $f(-a^2) \neq 0$ (d)Put $D = a^2$, provided $f(a) \neq 0$

In Method of Variation of Parameters the value of parameters A(x) and B(x) is given as 4

(a)
$$A(x) = \int \frac{g(x)y_1(x)}{W} dx \quad B(x) = \int \frac{g(x)y_2(x)}{W} dx$$

(b) $A(x) = \int \frac{g(x)y_2(x)}{W} dx \quad B(x) = \int \frac{g(x)y_1(x)}{W} dx$
(c) $A(x) = -\int \frac{g(x)y_1(x)}{W} dx \quad B(x) = \int \frac{g(x)y_2(x)}{W} dx$
(d) $A(x) = -\int \frac{g(x)y_2(x)}{W} dx \quad B(x) = \int \frac{g(x)y_1(x)}{W} dx$

5 The auxiliary equation for the LDE $x^2y'' + 2xy' - 2y = 0$ is

(a)
$$2m^2 + m - 6 = 0$$
 (b) $4m^2 + m + 6 = 0$ (c) $m^2 + m - 2 = 0$ (d) $2m^2 - m - 6 = 0$
6 Eliminating one of the variable y_2 from the simultaneous LDEs $y_1' + y_1 + 3y_2 = 4e^{-t}$;

 $y_2' + 4y_1 - 3y_2 = 8t$ the corresponding LDE formed is

(a) $(D^2-2D - 15)y_1 = -7e^{-t} - 24t$ $(b)(D^2+2D + 15)y_1 = -7e^{-t} - 24t$ $(c)(D^2+2D - 15)y_1 = 7e^{-t} - 24t$ (d) $(D^2-2D + 15)y_1 = 7e^{-t} - 24t$ Solving by variation of parameter for the equation $y'' + y = \sec x$, the value of Wronskian is

8 The particular integral of differential equation(x > 0) $x^{3}y''' + 5x^{2}y'' + 5xy' + y = x^{2}$ Using the transformation x =e^t, we get (in operator notation) [$\theta^3 + 2\theta^2 + 2\theta + 1$]y = e^{2t} is

(a) $\frac{1}{21}e^{2t}$ (b) $\frac{1}{31}e^{-2t}$ (c) $-\frac{1}{51}e^{2t}$ (d) $\frac{1}{21}e^{7t}$ Particular Integral of the LDE 9y"+ 6y'+ y = $e^{-x/3}$ is

9

$$(a) - \frac{x^2}{18} e^{-x/3} \qquad (b) \frac{x^2}{28} e^{x/3} \qquad (c) \frac{x^2}{13} \qquad (d) \frac{x^2}{17} e^{-x/3}$$

Particular integral of $y'' + y' = x^2 + 2x + 4$ 10

(a)
$$\frac{x^2}{3} + 4x$$
 (b) $\frac{x^3}{3} + 4$ (c) $\frac{x^3}{3} + 4x$ (d) $\frac{x^3}{3} + 4x^2$

11 By the method of undetermined coefficients the trial solution for y_p for the differential equation $y'' + 2y' + y = 6e^{-x}$ is of the form

(c) Cx^2e^{-x} (d) None of these (a) Ae^{-x} (b) Bxe^{-x}

- For a given system of linear differential equation $y_1' = 2y_1 + y_2$, $y_2' = y_1 + 2y_2$, the second order 12 linear differential satisfied by the y_1 is
 - $y_1'' + 4y_1' + 3y_1 = 0$ (b) $y_1'' 4y_1' + 3y_1 = 0$ (c) $y_1'' 4y_1' 3y_1 = 0$ (d)none of these (a)
- 13 Which suitable transformation of independent variable should be used to covert the given differential equation $(x + 2)^3 y''' + (x + 2)^2 y'' + (x + 2)y' - y = 24x^2$ into a linear differential equation with constant coefficients?
 - (b) $x = \log t$ (c) $x = (e^t 2)$ (d) (a) $x = e^t$ None of these
- The solution of differential equation $x^2y'' xy' + 2y = 6$ which satisfies the given conditions 14 y(1) = 1, y'(1) = 2.
- $(a)y = x[2\sin(\ln x) 3\cos(\ln x)] + 3$ $(b)y = x[4\sin(\ln x) 2\cos(\ln x)] + 3$ $(c)y = x[4\sin(\ln x) 2\cos(\ln x)] + 3$ (c)y $3\cos(\ln x)$] + 3 (d) $y = x[2\sin(\ln x) - \cos(\ln x)] + 3a$

15 If
$$D = \frac{d}{dx}$$
, then $\frac{1}{(x^2D^2+2)} 16x^3$ is equal

(A)
$$\frac{1}{2}x^3$$
 (B) $2x^3$ (C) $\frac{1}{4}(\log x)^3$ (D) $\frac{1}{4}x^3$
The solution of differential equation $2x^2y'' + 2xy' - y - x$ which satis

16 The solution of differential equation $2x^2y'' + 3xy' - y = x$ which satisfies the given conditions y(1) = 1, $y(4) = \frac{41}{16}$ is

$$(A)y = \frac{1}{4}\left(\sqrt{x} + \frac{1}{x}\right) + \frac{x}{2} \qquad (B) \ y = \frac{1}{4}\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) + \frac{x}{2} \qquad (C) \ y = \frac{1}{4}\left(\sqrt{x} + \frac{1}{x}\right) + \frac{x^2}{2} \qquad (D)$$
None of these

17 The resultant second order differential equation in terms of y₂ for the two system of first order differential equations $y_1' + 2y_2 - 2y_1 - y_2 = e^{2t}$, $y_2' + y_1 - 2y_2 = 0$, is

$$y_1' + 2y_2 - 2y_1 - y_2 = e^{2t}$$
, $y_2' + y_1 - 2y_2 = 0$, is

 $(a)y_2'' - 6y_2' + 5y_2 = -e^{2t}$ $(b)y_2'' + 6y_2' + 5y_2 = -e^{2t}$ $(c)y_2'' - 6y_2' + 5y_2 = e^{2t}$ $(d)y_2'' + 6y_2' + 5y_2 = e^{2t}$

The particular integral of the differential equation $(D^3 - D)y = e^x + e^{-x}$ 18

(a)
$$\frac{e^{x}+e^{-x}}{2}$$
 (b) $x\left(\frac{e^{x}+e^{-x}}{2}\right)$ (c) $x^{2}\left(\frac{e^{x}+e^{-x}}{2}\right)$ (d) $x^{2}\left(\frac{e^{x}-e^{-x}}{2}\right)$

<u>Unit-5</u>

1	The parametric representation of the cylinder $x^2 + y^2 = a^2$ is (a) $r(u,v) = a \cos u i + a \sin u j + v k$ (b) $r(u,v) = a \cos u i + a \sin u j + k$ (c) $r(u,v) = \cos u i + \sin u j + k$ (d) $r(u,v) = a \cos u i + a \sin u j + u k$						
2	The parametric representation of the paraboloid of revolution $x^2 + y^2 = z$ is (a) $r(u,v) = u \cos v i + u \sin v j + u^2 k$ (b) $r(u,v) = a \cos u i + a \sin u j + u k$ (c) $r(u,v) = v \cos u i + v \sin u j + v k$ (d) $r(u,v) = v \cos u i + v \sin u j + u k$						
3	The parametric representation of the cone of revolution $x^2 + y^2 = z^2$ is? (a) $r(u,v) = u \cos v i + u \sin v j + u k$ (b) $r(u,v) = a \cos u i + a \sin u j + u k$ (c) $r(u,v) = v \cos u i + v \sin u j + u k$ (d) $r(u,v) = v \cos u i + v \sin u j + u k$						
4	The parametric representation of the helix is ? (a) $r(t) = a \cos t i + a \sin t j + ct k$ (b) $r(t) = a \cos t i + a \sin t j + k$ (c) $r(t) = \cos t i + \sin u t + k$ (d) $r(t) = a \cos t i + a \sin t j + tk$						
5	If r(t) denotes the position vector of a point P on the curve C, then the tangent vector to curve C at P is given by? (a) $r'(t)$ (b) $r''(t)$ (c) $r(t)$ (d) none of these						
6	If r(t) denotes the position vector of a point P on the curve C, then the unit tangent vector to curve C at F Is given by? (a) $\frac{r'(t)}{ r'(t) }$ (b) $\frac{r''(t)}{ r'(t) }$ (c) $\frac{r''(t)}{ r(t) }$ (d) $\frac{r''(t)}{ r''(t) }$						
7	If V(t) is the vector function then $[V(t) \times V'(t)]' =$? (a) $\frac{V(t) \times V''(t)}{V(t) \times V'(t)}$ (b) $V(t) \times V'(t)$ (c) $V'(t) \times V'(t)$ (d) none						
8	The length of the curve $r(t) = \cos t i + \sin t j + t k, 0 \le t \le 2\pi$ is (a) $2\sqrt{2\pi}$ (b) $\sqrt{2\pi}$ (c) $3\sqrt{2\pi}$ (d) $5\sqrt{2\pi}$						
9	The parametric representation of the curve $x = y, y = z$ is (a) $r(t) = t(i + j + k)$ (b) $r(t) = (i + j + k)$ (c) $r(t) = t(i - j + k)$ (d) $r(t) = 2t(i + j + k)$						
10	If $r(t) = x(t)i + y(t)j + z(t)k$, then the norm of r(t) is equal to (a) $[x(t)^2 + y(t)^2 + z(t)^2]^{1/2}$ (b) $[x(t) + y(t) + z(t)]^{1/2}$ (c) $[x(t)^2 + y(t)^2 + z(t)^2]^2$ (d) $[x(t)^2 + y(t)^2 + z(t)^2]$						
11	The length of the curve $r(t) = 2 \cos t i + 2 \sin t j$, $0 \le t \le 2\pi is$ (a) 4π (b) 2π (c) π (d) 3π						
12	The length of the curve $r(t) = \cos t i + \sin t j + 3t k, 0 \le t \le 2\pi$ (a) $4\pi\sqrt{10}$ (b) $2\pi\sqrt{10}$ (c) $\pi\sqrt{10}$ (d) $3\pi\sqrt{10}$						
13	The gradient of a scalar field f(x,y,z) produces a?						
	(a) Vector field (b) Scalar Field (c) surface (d) none						
14	If $r = xi + yj + zk$, then the grad $\left(\frac{1}{r}\right) = ?$						

at P

	(a) $-\frac{\vec{r}}{r^3}$ (b) $\frac{\vec{r}}{r^3}$ (c) $-\frac{\vec{r}}{r}$ (d) $-2\frac{\vec{r}}{r^3}$					
15	The vector normal to the surface $f(x, y, z) = c$ at the point P is given by ?					
	(a) $\nabla f(P)$ (b) $\nabla f(P)$ (c) $\nabla \times f$ (d) none					
16	The normal vector to the surface $xy^2 + 2yz = 8$ at the point $(3, -2, 1)$ is ?					
	(a) $2x - 5j - 2k$ (b) $2x + 5j - 2k$ (c) $2x - 5j + 2k$ (d) $2x + 5j + 2k$					
17	The directional derivative of $f(x, y, z)$ in the direction of \xrightarrow{b}_{b} is ?					
	(a) $\nabla f \cdot \frac{\overrightarrow{b}}{ b }$ (b) $\nabla f \cdot b$ (c) $\nabla f \cdot f$ (d) none					
18	The maximum rate of increase of a scalar field $f(x, y, z)$ occure in the direction of the vector? (a) ∇f (b) ∇f (c) $\nabla \times f$ (d) none					
19	The equation of tangent plane to the surface $x^2 - 3y^2 - z^2 = 2$ at the point (3,1,2) is ? (a) $3x - 3y - 2z = 2$ (b) $3x - 3y + 2z = 2$ (c) $3x + 3y - 2z = 2$ (d) $3x + 3y + 2z = 2$					
20	If 'f' is a differentiable scalar field then $\nabla \times \nabla f = ?$ (a) 0 (b) f (c) -f (d) 2f					
21	If V is a differentiable vector field then $\nabla . (\nabla \times f) = ?$ (a) 0 (b) f (c) -f (d) 2f					
22	If V is a differentiable vector field then $\operatorname{curl}(\operatorname{div}(V)) = ?$ (a) 0 (b) 1 (c) -1 (d) not defined					
23	A vector field V is said to be rotational if (a) $\nabla \times V \neq 0$ (b) $\nabla \times V = 0$ (c) $\nabla V = 0$ (d) None					
24	A force field F is said to be conservative if ? (a) $\nabla \times F \neq 0$ (b) $\nabla \times F = 0$ (c) $\nabla \cdot F = 0$ (d) None					
25	If $V = zi + xj + yk$ then curl(curl V)=? (a) 0 (b) 1 (c) -1 (d) none					
26	If f,g are scalar function, then $\nabla . (\nabla f \times \nabla g) = ?$ (a) 0 (b) 1 (c) 2 (d) none					
27	If $f(x, y, z)$ satisfy the Laplace equation $\nabla^2 f = 0$, then $\nabla f(x, y, z)$ is a?(a) solenoidal(b) Irrotational(c) Both a & b(d) none					
28	If a is a constant vector and $r = xi + yj + zk$ then which of the following is true? (a) $\nabla . (a.r) = a$ (b)) $\nabla . (a \times r) = 0$ (c) $\nabla \times (a \times r) = 2a$ (d) All of these					

If f(x, y, z) satisfy the Laplace equation $\nabla^2 f = 0$, then $\nabla f(x, y, z)$ is a?(a) solenoidal(b) Irrotational(c) Both a & b(d) none

28 If **a** is a constant vector and r = xi + yj + zk then which of the following is true? (a) $\nabla . (a.r) = a$ (b)) $\nabla . (a \times r) = 0$ (c) $\nabla \times (a \times r) = 2a$ (d) All of these

Unit – 6 Line integral

$$\begin{aligned} & \int_{c} ds = \cdots \dots ?, \text{ where } C \text{ is the curve } x = 3 \cos t, y = 3 \sin t, 0 \le t \le \pi \\ & (a) \exists \pi \quad (b) \quad \pi \quad (c) \quad 2\pi \quad (d) \exists \pi/2 \end{aligned}$$

$$\begin{aligned} & \int_{c} (x^{2} + yz) = \cdots \dots ?, \text{ where } C \text{ is the curve } x = t, y = t^{2}, z = 3t, 1 \le t \le 2 \\ & (a) \quad 163/4 \quad (b) \quad 163/2 \quad (c) \quad 163 \quad (d) \quad 120 \end{aligned}$$

$$\begin{aligned} & \text{The closed line integral } \int_{c} Mdx + Ndy \text{ over the curve } C \text{ is independent of the path if } ? \\ & (a) \quad \frac{\partial M}{\partial x} = \frac{\partial N}{\partial y} \quad (b) \quad \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \quad (c) \quad \frac{\partial N}{\partial x} = -\frac{\partial M}{\partial y} \quad (d) \quad \frac{\partial M}{\partial x} = -\frac{\partial N}{\partial y} \end{aligned}$$

$$\begin{aligned} & \text{If } V \text{ represent the force field then the work done by V along any simple closed path is ...? \\ & (a) \quad 0 \quad (b) \quad V \quad (c) \quad 2V \quad (d) \text{ none of these} \end{aligned}$$

$$\begin{aligned} & \text{Solutions } \int_{c} (x + xy^{2})dx + (y + x^{2}y)dy = \cdots \dots ?, \text{ where } C \text{ is the boundary of the region bounded by } x = y, x = y^{2} \end{aligned}$$

$$\begin{aligned} & (a) \quad 0 \quad (b) \quad 21 \quad (c) \quad 12 \quad (d) \quad 123 \end{aligned}$$

$$\begin{aligned} & \text{for } f_{c} r, dr = \cdots \dots ?, \text{ where } C \text{ is the circle } x^{2} + y^{2} = a^{2}, z = 0 \text{ and } r = xi + yj + zk \end{aligned}$$

$$\end{aligned} \qquad \end{aligned} \\ & (a) \quad 0 \quad (b) \quad 1 \quad (c) \quad -1 \quad (d) \quad 3 \end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned} & \text{fe area bounded by the closed curve } x = a \cos t, y = 4 \sin t, 0 \le t \le 2\pi \end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

(a) 0 (b) 4π (c) $\pi/2$ (d) $2\pi/3$ The surface area of the surface $z^2 = x^2 + y^2$, $0 \le z \le 4$ is ? 12 (a) $16\sqrt{2}\pi$ (b) $\sqrt{2}\pi$ (c) $4\sqrt{2}\pi$ (*d*) 16π The surface area of the surface $z^2 + x^2 + y^2 = 16$, $x \ge 0$, $y \ge 0$, $z \ge 0$ is ? 13 (c) $4\sqrt{2}\pi$ (a) 8 π (b) 4π (d) 16 π $\iint_{S} (yzdydz + zxdzdx + xydxdy) = ?: S is the surface of the cube with edge of length one unit$ 14 (a) 0(b) 4π (c) $\pi/2$ (*d*) $2\pi/3$ $\iint_{S} (xdydz + ydzdx + zdxdy) = ?: S is the surface of the cube with edge of length one unit$ 15 (a) 3 (c) 0 (d) −3 (b) 4π $\iint_{S} (xdydz + ydzdx + zdxdy) = ?: S \text{ is the surface } x^{2} + y^{2} + z^{2} = 16$ 16 (*a*) 256π (b) 144π (c) 0 (*d*) 32π $\iint_{S} (dydz + dzdx + dxdy) = ?: S \text{ is the surface } z^{2} + x^{2} + y^{2} = 16$ 17 (a) 0 (b) 144π (c) 10 (d) 32π 18

If S is the boundary of a closed region D and **n** is outward unit normal vector drawn to surface S and xi + yj + zk then $\iint_{S} (r.n)dA = ?$ (V is the volume of the region)

(a) 3V (b) 2V (c) V (d) V/2

19 $\iint_{S} (r.n)dA = ?$ where S is the surface of the cube $0 \le x \le 1, 0 \le y \le 2, 0 \le z \le 3$

(a) 18 (b) 15 (c) 12 (d) 10

20 $\iint_{S} (r.n) dA = ?$ S is the surface $x^{2} + y^{2} + z^{2} = 9$

(a) 108π (b) 144π (c) 0 (d) 32π

21 If S is the boundary of a closed region D and **n** is outward unit normal vector drawn to surface S and r = xi + yj + zk, V = 2xi + 3zyj + 2xyzk then $\iint_{S} (curl V.n) dA = ?$ (V is the volume of the region)

(a) 0 (b) 2V (c) V (d) V/2

22 $\iint_{S} (curl V.n)dA = ?$ where S is the surface $0 \le x \le 4, 0 \le y \le 2, 0 \le z \le 3$ and V = xyi + zxj - zk

(a)	0	(b)	12	(c) 32	4 (d) 128
-----	---	-----	----	--------	-----------

23 If S is the boundary of a closed region D and **n** is outward unit normal vector drawn to surface S and r = xi + yj + zk, **a** is a constant vector then $\iint_{S} (a.n)dA = ?$ (A is the area of the region)

(a) 0 (b) 2A (c) 3A (d) A/2

Unit-4 PDE

1 How many possible solution are there for one dimensional Heat equation? (a) Three (d) none of these (b) (C) one two 2 How many possible solution are there for wave equation? (a) Three (b) (c) (d) none of these two one 3 Method of separation of variable to solve the PDE is also known as ? (a) Fourier Method (b) Picard Method (c) Laplace Method (d) Lagrange's Method Which of the following solution of heat equation is used to solve the problem related to conduction of 4 heat? (b) $u(x,t) = (A \cos px + B \sin px)e^{c^2p^2t}$ (a) $u(x,t) = (A \cos px + B \sin px)e^{-c^2p^2t}$ (d) $u(x,t) = (A \cos px + B \sin px)e^{-c^2p^2}$ (c) $u(x,t) = (A \cos pt + B \sin pt)e^{-c^2p^2t}$ 5 In the steady state condition the two dimensional heat equation become? (a) Laplace equation (b) Lagrange equation (c) Wave equation (d) Not changed The solution of $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0, u(x, 0) = 4e^{-x}$ is? 6 (b) $4e^{-x-3/2y}$ (a) $4e^{-x+3/2y}$ (d) $4e^{-3/2y}$ (c) $4e^{x+3/2y}$ The solution of $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$, $u(0, y) = 8e^{-3y}$ is? 7 (b)) $8e^{(12x+3y)}$ (c)) $8e^{-(12x-3y)}$ (a) $8e^{-(12x+3y)}$ (d)) $8e^{(12x-3y)}$ In the equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial r^2}$, c^2 represent? 8 (a) Diffusivity of material (b) Density of Material (c) Heat capacity of material (d) none of these The general second degree PDE, $A \frac{\partial^2 u}{\partial x^2} + B \frac{\partial^2 u}{\partial x \partial y} + C \frac{\partial^2 u}{\partial y^2} + D \frac{\partial u}{\partial x} + E \frac{\partial u}{\partial y} + Fu = 0$ represent a parabolic 9 equation if? (a) $B^2 - 4AC = 0$ (b) $B^2 - 4AC > 0$ (c) $B^2 - 4AC < 0$ (d) None

10	The general second equation if ?	degree PDE, $A \frac{\partial^2 u}{\partial x^2} + b$	$B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + D\frac{\partial u}{\partial x} + E\frac{\partial u}{\partial y}$	+Fu=0	represent a elliptic			
	(a) $B^2 - 4AC = 0$	(b) $B^2 - 4AC > 0$	(c) $B^2 - 4AC < 0$		(d) None			
11	equation if ?		$B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + D\frac{\partial u}{\partial x} + E\frac{\partial u}{\partial y}$	+Fu=0				
	(a) $B^2 - 4AC = 0$	(b) $B^2 - 4AC > 0$	(c) $B^2 - 4AC < 0$		(d) None			
12	Which type of The t	wo-dimensional heat equ	uation $\frac{\partial u}{\partial t} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$ is ?)				
	(a) Para <mark>bo</mark> lic	(b) Elliptic	(c) Hyperbolic	(d) No	n linear			
13	Which type of the pd equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ is ?							
	(a) Parabolic	(b) Elliptic	(c) Hyperbolic	(d) No	n linear			
14	Classify the PDE $\frac{\partial^2 t}{\partial x^2}$	$\frac{u}{2} = 5\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} ?$						
	(a) Parab <mark>olic</mark>	(b) Elliptic	(c) Hyperbolic	(d) No	neof these			
15	Classify the PDE $\frac{\partial^2 t}{\partial x^2}$	$\frac{u}{2} + 2\frac{\partial^2 u}{\partial x \partial y} + 3\frac{\partial^2 u}{\partial y^2} - \frac{\partial u}{\partial x} +$	$+\frac{\partial u}{\partial y}+3u=0$					
	(a) Parabolic	(b) <mark>Elli</mark> ptic	(c) Hyperbolic	(d) No	neof these			
16	Classify the PDE $\frac{\partial^2 t}{\partial x^2}$	$\frac{u}{2} + \frac{\partial^2 u}{\partial x \partial y} - \frac{\partial^2 u}{\partial y^2} - \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}$	+3u = 0					
	(a) Parabolic	(b) Elliptic	(c) Hyp <mark>erb</mark> olic	(d) No	neof these			
17	Which of the following	ng is wave equation ?						
18	000	(b) $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ ng is the solution of wave	(c) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ e equation?	(d) $\frac{\partial u}{\partial t}$	$= c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$			
	(a) $(c_1 e^{px} + c_2 e^{-px})(c_3 e^{cpt} + c_4 e^{-cpt})$ (b) $(c_1 \cos px + c_2 \sin px)(c_3 \cos cpt + c_4 \sin cpt)$							

(c) $(c_1x + c_2)(c_3t + c_4)$ (d) all of these